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In the bulk state, the Ising face-centered-cubic �fcc� antiferromagnet is fully frustrated and is known to have
a very strong first-order transition. In this paper, we study the nature of this phase transition in the case of a thin
film as a function of the film thickness. Using Monte Carlo simulations, we show that the transition remains
first order down to a thickness of four fcc cells �eight atomic layers�. It becomes clearly second order at a
thickness of two fcc cells, i.e., four atomic layers. It is also interesting to note that the presence of the surface
reduces the ground-state degeneracy found in the bulk. For the two-cell thickness, the surface magnetization is
larger than the interior one. It undergoes a second-order phase transition at a temperature TC while interior
spins become disordered at a lower temperature TD. This loss of order is characterized by a peak of the interior
spins susceptibility and a peak of the specific heat which do not depend on the lattice size suggesting that either
it is not a real transition or it is a Kosterlitz-Thouless nature. The surface transition, on the other hand, is shown
to be of second order with critical exponents deviated from those of pure two-dimensional Ising universality
class. We also show results obtained from the Green’s function method. A discussion is given.
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I. INTRODUCTION

This paper deals with the question whether or not the
phase transition known in the bulk state changes its nature
when the system is made as a thin film. In a recent work, we
have considered the case of a bulk second-order transition.
We have shown that under a thin-film shape, i.e., with a finite
thickness, the transition shows effective critical exponents
whose values are between two-dimensional �2D� and three-
dimensional �3D� universality classes �1�. If we scale these
values with a function of thickness as suggested by Fisher
�2� we should find, as long as the thickness is finite, the 2D
universality class.

In this paper, we study the effect of the film thickness in
the case of a bulk first-order transition. The question to
which we would like to answer is whether or not the first
order becomes a second order when reducing the thickness.
For that purpose we consider the face-centered-cubic �fcc�
Ising antiferromagnet. This system is fully frustrated with a
very strong first-order transition.

On the one hand, effects of the frustration in spin systems
have been extensively investigated during the last 30 years.
In particular, by exact solutions, we have shown that frus-
trated spin systems have rich and interesting properties such
as successive phase transitions with complicated nature, par-
tial disorder, reentrance, and disorder lines �3,4�. Frustrated
systems still challenge theoretical and experimental methods.
For recent reviews, the reader is referred to Ref. �5�.

On the other hand, physics of surfaces and objects of
nanometric size have also attracted an immense interest. This
is due to important applications in industry �6–8�. In this
field, research results are often immediately used for indus-
trial applications without waiting for a full theoretical under-

standing. An example is the so-called giant magnetoresis-
tance used in data storage devices, magnetic sensors, etc.
�9–12�. In parallel to these experimental developments, much
theoretical effort has also been devoted to the search of
physical mechanisms lying behind new properties found in
nanometric objects such as ultrathin films, ultrafine particles,
quantum dots, spintronic devices, etc. This effort aimed not
only at providing explanations for experimental observations
but also at predicting new effects for future experiments
�13,14�.

The above-mentioned aim of this paper is thus to investi-
gate the combined effects of frustration and film thickness
which are expected to be interesting because of the symme-
try reduction. As said above, the bulk fcc Ising antiferromag-
net is fully frustrated because it is composed of tetrahedra
whose faces are equilateral triangles. The antiferromagnetic
�AF� interaction on such triangles causes a full frustration
�5�. The bulk properties of this material have been largely
studied as we will show below. In this paper, we shall use the
recent high precision technique called “Wang-Landau” flat
histogram Monte Carlo �MC� simulations to identify the or-
der of the transition. We also use the Green’s function �GF�
method for qualitative comparison.

The paper is organized as follows. Section II is devoted to
the description of the model. We recall there properties of the
3D counterpart model in order to better appreciate properties
of thin films obtained in this paper. In Sec. III, we show our
results obtained by MC simulations on the order of the tran-
sition. A detailed discussion on the nature of the phase tran-
sition is given. In the regime of second-order transition, we
show in this section the results on the critical exponents ob-
tained by MC flat histogram technique. Section IV is devoted
to a study of the quantum version of the same model by the
use of the GF method. Concluding remarks are given in
Sec. V.*Corresponding author; diep@u-cergy.fr
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II. MODEL AND GROUND-STATE ANALYSIS

It is known that the AF interaction between nearest-
neighbor �NN� spins on the fcc lattice causes a very strong
frustration. This is due to the fact that the fcc lattice is com-
posed of tetrahedra each of which has four equilateral tri-
angles. It is well known �5� that it is impossible to fully
satisfy simultaneously the three AF bond interactions on
each triangle. In the case of Ising model, the ground state
�GS� is infinitely degenerate for an infinite system size: on
each tetrahedron two spins are up and the other two are
down. The fcc system is composed of edge-sharing tetrahe-
dra. Therefore, there is an infinite number of ways to con-
struct the infinite crystal. The minimum number of ways of
such a construction is a stacking, in one direction, of uncor-
related AF planes. The minimum GS degeneracy of a L3

fcc-cell system �L being the number of cells in each direc-
tion� is therefore equal to 3�22L where the factor 3 is the
number of choices of the stacking direction, 2 the degen-
eracy of the AF spin configuration of each plane, and 2L the
number of atomic planes in one direction of the fcc crystal
�the total number of spins is N=4L3�. The GS degeneracy is
therefore of the order of 2N1/3

. Note that at finite temperature,
due to the so-called “order by disorder” �15,16�, the spins
will choose a long-range ordering. In the case of AF fcc Ising
crystal, this ordering is an alternate stacking of up-spin
planes and down-spin planes in one of the three directions.
This has been observed also in the Heisenberg case �17� as
well as in other frustrated systems �18�.

The phase transition of the bulk frustrated fcc Ising anti-
ferromagnet has been found to be of the first order �19–23�.
Note that for the Heisenberg model, the transition is also
found to be of the first order as in the Ising case �17,24�.
Other similar frustrated antiferromagnets such as the hcp XY
and Heisenberg antiferromagnets �25� and stacked triangular
XY and Heisenberg antiferromagnets �26,27� show the same
behavior.

Let us consider a film of fcc lattice structure with �001�
surfaces. The Hamiltonian is given by

H = − �
�i,j�

Ji,j�i · � j , �1�

where �i is the Ising spin at the lattice site i; ��i,j� indicates
the sum over the NN spin pairs �i and � j.

In the following, the interaction between two NN on the
surface is supposed to be AF and equal to Js. All other inter-
actions are equal to J=−1 for simplicity. Note that in a pre-
vious paper �28�, we have studied the case of the Heisenberg
model on the same fcc AF film as a function of Js.

For Ising spins, the GS configuration can be determined in
a simple way as follows: we calculate the energy of the sur-
face spin in the two configurations shown in Fig. 1 where the
film surface contains spins 1 and 2 while the beneath layer
spins 3 and 4. In the ordering of type I �Fig. 1�a��, the spins
on the surface �xy plane� are antiparallel and in the ordering
of type II �Fig. 1�b�� they are parallel. Of course, apart from
the overall inversion, for type I there is a degenerate configu-
ration by exchanging the spins 3 and 4. To see which con-

figuration is stable, we write the energy of a surface spin for
these two configurations,

EI = − 4�Js� ,

EII = 4�Js� − 4�J� . �2�

One sees that EI�EII when Js /J�0.5. In the following, we
study the case Js=J=−1 so that the GS configuration is of
type I.

III. MONTE CARLO RESULTS

In this section, we show the results obtained by MC simu-
lations with Hamiltonian �1� using the high-precision Wang-
Landau flat histogram technique �29�. Wang and Landau re-
cently proposed a MC algorithm for classical statistical
models. The algorithm uses a random walk in energy space
in order to obtain an accurate estimate for the density of
states ��E� which is defined as the number of spin configu-
rations for any given E. This method is based on the fact that
a flat energy histogram H�E� is produced if the probability
for the transition to a state of energy E is proportional to
��E�−1. At the beginning of the simulation, the density of
states �DOS� is set equal to 1 for all possible energies,
��E�=1. We begin a random walk in energy space �E� by
choosing a site randomly and flipping its spin with a prob-
ability proportional to the inverse of the momentary density
of states. In general, if E and E� are the energies before and
after a spin is flipped, the transition probability from E to E�
is

p�E → E�� = min���E�/��E��,1� . �3�

Each time an energy level E is visited, the DOS is modified
by a modification factor f �0 whether the spin flipped or not,
i.e., ��E�→��E�f . At the beginning of the random walk, the
modification factor f can be as large as e1	2.718 281 8. A
histogram H�E� records how often a state of energy E is
visited. Each time the energy histogram satisfies a certain
“flatness” criterion, f is reduced according to f →
f and
H�E� is reset to zero for all energies. The reduction process
of the modification factor f is repeated several times until a
final value f final which is close enough to 1. The histogram is
considered as flat if

H�E� � x% . �H�E�� �4�

for all energies, where x% is chosen between 70% and 95%
and �H�E�� is the average histogram.
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FIG. 1. The ground-state spin configuration of the fcc cell at the
film surface: �a� ordering of type I for Js�−0.5�J�; �b� ordering of
type II for Js�−0.5�J�.

PHAM PHU, NGO, AND DIEP PHYSICAL REVIEW E 79, 061106 �2009�

061106-2



The thermodynamic quantities �29,30� can be evaluated
by

�En� =
1

Z
�
E

En��E�exp�− E/kBT� ,

Cv =
�E2� − �E�2

kBT2 ,

�Mn� =
1

Z
�
E

Mn��E�exp�− E/kBT� ,

	 =
�M2� − �M�2

kBT
,

where Z is the partition function defined by

Z = �
E

��E�exp�− E/kBT� . �5�

The canonical distribution at any temperature can be calcu-
lated simply by

P�E,T� =
1

Z
��E�exp�− E/kBT� . �6�

In this work, we consider a energy range of interest
�31,32� �Emin,Emax�. We divide this energy range to R sub-
intervals, the minimum energy of each subinterval is Emin

i for
i=1,2 , . . . ,R, and maximum of the subinterval i is Emax

i

=Emin
i+1 +2
E, where 
E can be chosen large enough for a

smooth boundary between two subintervals. The Wang-
Landau algorithm is used to calculate the relative DOS of
each subinterval �Emin

i ,Emax
i � with the modification factor

f final=exp�10−9� and flatness criterion x%=95%. We reject
the suggested spin flip and do not update ��E� and the energy
histogram H�E� of the current energy level E if the spin-flip
trial would result in an energy outside the energy segment.
The DOS of the whole range is obtained by joining the DOS
of each subinterval �Emin

i +
E , Emax
i −
E�.

The film size used in our present work is L�L�Nz,
where L is the number of cells in x and y directions, while Nz
is that along the z direction �film thickness�. We use here L
=30,40, . . . ,150 and Nz=2,4 ,8 ,12. Periodic boundary con-
ditions are used in the xy planes. Our computer program was
parallelized and run on a rack of several dozens of 64-bit
CPU. �J�=1 is taken as unit of energy in the following.

Before showing the results let us adopt the following no-
tations. Sublattices 1 and 2 of the first fcc cell belong to the
surface layer, while sublattices 3 and 4 of the first cell belong
to the second layer �see Fig. 1�a��. In our simulations, we
used Nz fcc cells, i.e., 2Nz atomic layers. We used the sym-
metry of the two film surfaces.

A. Crossover of the phase transition

As said earlier, the bulk fcc antiferromagnet with Ising
spins shows a very strong first-order transition. This is seen
in MC simulation: Fig. 2 shows the energy per spin E versus

T for L=Nz=12. One observes here a very large latent heat
indicating a strong first-order character even with a small
lattice size. Using the density of states ��E� obtained by the
WL technique described above, we calculate the energy dis-
tribution with Eq. �6� for two cases: with and without peri-
odic boundary conditions �PBC� in the z direction, at their
respective transition temperatures Tc=1.751 13 and Tc
=1.768 49 for the simulated size L=Nz=12 �Fig. 3�. We ob-
serve here a double-peak structure confirming the first-order
transition.

Our purpose here is to see whether the transition becomes
second order when we decrease the film thickness. As it turns
out, the transition remains of first order down to Nz=4 as
seen by the double-peak energy distribution displayed in Fig.
4. Note that we do not need to go to larger L, since the
transition is clearly of first order already at L=40. We can
extrapolate these results to get the latent heat at the thermo-
dynamic limit.

In Fig. 5 we plot the latent heat 
E at L→� as a function
of thickness Nz. Data points are well fitted with the following
formula:


E = A −
B

Nz
d−1�1 +

C

Nz
� , �7�

where d=3 is the dimension, A=0.3370, B=3.7068, C
=−0.8817. Note that the term Nz

d−1 corresponds to the surface
separating two domains of ordered and disordered phases at
the transition. The second term in the brackets corresponds to

T

E

−2
−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3
−1.2
−1.1

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

L = 12

FIG. 2. Bulk energy vs T for L=Nz=12.
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(a)

FIG. 3. Bulk energy distribution with periodic boundary condi-
tions in all three directions �a� and without PBC in z direction. �b�
The energy distribution was calculated using Eq. �6� for L=Nz

=12 in the cases �a� and �b� at their respective transition tempera-
tures Tc=1.75113 and Tc=1.76849.
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a size correction. As seen in Fig. 5, the latent heat vanishes at
a thickness between 2 and 3. This is verified by our simula-
tions for Nz=2. For Nz=2 we find a transition with all
second-order features: no discontinuity in energy �no double-
peak structure� even when we go up to L=150.

Before showing in the following the results of Nz=2, let
us discuss on the crossover. In the case of a film with finite
thickness studied here, it appears that the first-order character
is lost for very small Nz. A possible cause for the loss of the
first-order transition is from the role of the correlation in the
film. If a transition is of first order in 3D, i.e., the correlation
length is finite at the transition temperature, then in thin films
the thickness effect may be important: if the thickness is
larger than the correlation length at the transition, than the
first-order transition should remain. On the other hand, if the
thickness is smaller than that correlation length, the spins
then feel an “infinite” correlation length across the film
thickness resulting in a second-order transition.

B. Film with four atomic layers (Nz=2)

Let us show in Figs. 6 and 7 the energy and the magne-
tizations of sublattices 1 and 3 of the first two cells with L
=120 and Nz=2. It is interesting to note that the surface layer
has larger magnetization than that of the second layer. This is
not the case for nonfrustrated films where the surface mag-
netization is always smaller than the interior ones because of
the effects of low-lying energy surface-localized magnon
modes �33,34�. One explanation can be advanced: due to the

lack of neighbors surface spins are less frustrated than the
interior spins. As a consequence, the surface spins maintain
their ordering up to a higher temperature.

Let us discuss finite-size effects in the transitions ob-
served in Figs. 8 and 9. This is an important question be-
cause it is known that some apparent transitions are artifacts
of small system sizes. To confirm further the observed tran-
sitions, we have made a study of finite-size effects on the
layer susceptibilities by using the Wang-Landau technique
described above �29�.

We observe that there are two peaks in the specific heat:
the first peak at T1	1.927, corresponding to the vanishing of
the sublattice magnetization 3, does not depend on the lattice
size while the second peak at T2	1.959, corresponding to
the vanishing of the sublattice magnetization 1, does depend
on L. Both energy distributions calculated at these tempera-
tures and the nearby ones show a Gaussian form indicating a
non-first-order transition �see Fig. 10�.

The fact that the peak at T1 does not depend on L suggests
two scenarios: �i� the peak does not correspond to a real
transition, since there exist systems where Cv shows a peak
but we know that there is no transition just as in the case of
one-dimensional Ising chain; �ii� the peak corresponds to a
Kosterlitz-Thouless transition. To confirm this we need to
check carefully several points such as the behavior of the
correlation length, etc. This is a formidable task which is not
the scope of this work.

Whatever the scenario for the origin of the peak at T1, we
know that the interior layers are disordered between T1 and
T2, while the two surface layers are still ordered. Thus, the
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FIG. 7. Sublattice magnetization for L=120 with film thickness
Nz=2.
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FIG. 4. Energy distribution for L=20,30,40 with film thickness
Nz=4 �eight atomic layers� calculated using Eq. �6� at the transition
temperatures T=1.8218,1.8223,1.8227, for these sizes,
respectively.
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FIG. 5. The latent heat 
E extrapolated at L→� as a function
of thickness Nz.
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FIG. 6. Energy versus temperature T for L=120 with film thick-
ness Nz=2.
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transition of the surface layers occurs while the disordered
interior spins act on them as dynamical random fields. Un-
like the true 2D random-field Ising model, which does not
allow a transition at finite temperature �35�, the random
fields acting on the surface layer are correlated. This explains
why one has a finite-T transition here. Note that this situation
is known in some exactly solved models where partial disor-
der coexists with order at finite T �3,4,36�. However, it is not
obvious to foresee what is the universality class of the tran-
sition at T2. The theoretical argument of Capehart and Fisher
�2� does not apply in the present situation because one does
not have a single transition here, unlike the case of simple
cubic ferromagnetic films studied before �1�. So, we wish to
calculate the critical exponents associated with the transition
at T2.

The exponent � can be obtained as follows. We calculate
as a function of T the magnetization derivative with respect
to = �kBT�−1: V1= ��ln M���= �E�− �ME� / �M�, where E is
the system energy and M is the sublattice order parameter.
We identify the maximum of V1 for each size L. From the
finite-size scaling we know that V1

max is proportional to L1/�

�37�. We show in Fig. 11 the maximum of V1 versus ln L for
the first layer. We find �=0.887�0.009. Now, using the scal-
ing law 	max�L�/�, we plot ln 	max versus ln L in Fig. 12.
The ratio of the critical exponents � /� is obtained by the
slope of the straight line connecting the data points of each
layer. From the value of � we obtain �=1.542�0.005. These
values do not correspond neither to 2D nor 3D Ising models
��2D=1.75, �2D=1, �3D=1.241, �3D=0.63�. We note how-
ever that if we think of the weak universality where only
ratios of critical exponents are concerned �38�, then the ratios
of these exponents 1 /�=1.128 and � /�=1.739 are not far
from the 2D ones which are 1 and 1.75, respectively.

IV. GREEN’S FUNCTION METHOD

We consider here the same fcc system but with quantum
Heisenberg spins. To compare the results with the Ising case,
we add in the Hamiltonian an Ising-type anisotropy interac-
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FIG. 8. Specific heats are shown for various sizes L as a func-
tion of temperature.
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FIG. 9. Susceptibilities of sublattices �a� 1 and �b� 3 are shown
for various sizes L as a function of temperature.
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tion term. In addition, this term avoids the absence of long-
range order of isotropic non-Ising spin model at finite tem-
perature �T� when the film thickness is very small, i.e., quasi-
two-dimensional system �39�. The Hamiltonian is given by

H = − �
�i,j�

Ji,jSi · S j − �
�i,j�

Ii,jSi
zSj

z, �8�

where Si is the Heisenberg spin at the lattice site i; ��i,j�
indicates the sum over the NN spin pairs Si and S j. Ji,j and
Ii,j are antiferromagnetic �negative�. Note that in the labora-
tory coordinates, the up spins have Sz�0 while the down
spins have Sz�0.

We can rewrite Hamiltonian �8� in the relative local spin
coordinates as

H = − �
�i,j�

Ji,j1

4
�cos �ij − 1��Si

+Sj
+ + Si

−Sj
−� +

1

4
�cos �ij + 1�

��Si
+Sj

− + Si
−Sj

+� +
1

2
sin �ij�Si

+ + Si
−�Sj

z

−
1

2
sin �ijSi

z�Sj
+ + Sj

−� + cos �ijSi
zSj

z� − �
�i,j�

Ii,j cos �ijSi
zSj

z,

�9�

where �ij is the angle between two NN spins. Note that in the
above expression, we have transformed all Sz�0; the rela-
tive spin orientation of each spin pair is now expressed by
�ij. In a collinear spin configuration such as those shown in
Fig. 1, cos �ij =−1 and 1 for antiparallel and parallel pairs,
respectively, while sin �ij =0. In noncollinear structures, the
calculation is more complicated. The general GF method for
noncollinear spin configuration has been proposed elsewhere
�40,41�. In the present study, one has a collinear spin con-
figuration shown in Fig. 1 because of the Ising-type aniso-
tropy. We define two double-time GF by

Gij�t,t�� = ��Si
+�t�;Sj

−�t���� , �10�

Fmj�t,t�� = ��Sm
− �t�;Sj

−�t���� . �11�

where i and j belong to the up-spin sublattice, and m to the
down-spin one. In the case of thin films, the reader is re-
ferred to Refs. �28,33,34� for a general formulation. We de-

scribe here only the main steps: we first write the equations
of motion for Gij�t , t�� and Fmj�t , t�� and we next neglect
higher-order correlations by using the Tyablikov decoupling
scheme �42� which is known to be valid for exchange terms
�43�, and then we introduce the following Fourier transforms
in the xy plane:

Gi,j�t,t�� =
1



� � dkxy

1

2�
�

−�

+�

d�e−i��t−t��

�gn,n���,kxy�eikxy·�Ri−Rj�, �12�

Fm,j�t,t�� =
1



� � dkxy

1

2�
�

−�

+�

d�e−i��t−t��

�fn,n���,kxy�eikxy·�Rm−Rj�, �13�

where � is the spin-wave frequency, kxy denotes the wave
vector parallel to xy planes, Ri is the position of the spin at
the site i, n, and n� are, respectively, the indices of the layers
where the sites i �or m� and j belong to. One has n ,n�
=1,2 , . . . ,2Nz. The integral over kxy is performed in the first
Brillouin zone in the xy reciprocal plane whose surface is 
.
Finally, one obtains for all layers the following matrix equa-
tion:

M���g = u . �14�

Note that though n runs from 1 to 2Nz, the matrix M has the
dimension of 4Nz�4Nz because for each n there are two
functions g�n ,n�� and f�n ,n��. In the above equation, g and
u are the column matrices of dimension 4Nz, which are de-
fined as follows:

g =�
g1,n�

f1,n�

]

g2Nz,n�

f2Nz,n�

� , u =�
2�S1

z��1,n�

0

]

2�S2Nz

z ��2Nz,n�

0
� , �15�

and

M��� =�
A1

+ B1 D1
+ D1

−
¯ ¯ ¯

− B1 A1
− − D1

− − D1
+

¯ ¯ ¯

C2
+ C2

− A2
+ B2 D2

+ D2
−

¯

− C2
− − C2

+ − B2 A2
− − D2

− − D2
+

¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ CNz

+ CNz

− ANz

+ BNz

¯ ¯ ¯ − CNz

− − CNz

+ − BNz
ANz

−

� ,

�16�

where for the spin configuration of type I �Fig. 1�a�� one has

An
� = � � �2Jn�Sn

z�Z + 8In�Sn
z�� ,

Bn = − 2Jn�Sn
z��Z�� , �17�

χ
ln

(
)

m
ax

γ/ν = 1.739(5)

Lln( )

3

3.5

4

4.5

5

5.5

6

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

FIG. 12. Maximum sublattice susceptibility 	max versus L in the
ln-ln scale. The slope of this straight line gives � /�. Error bars are
smaller than the size of the data points.
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Cn
+ = + 4Jn,n−1�Sn

z�cos
kya

2
, �18�

Cn
− = − 4Jn,n−1�Sn

z�cos
kxa

2
, �19�

Dn
+ = + 4Jn,n+1�Sn

z�cos
kya

2
, �20�

Dn
− = − 4Jn,n+1�Sn

z�cos
kxa

2
, �21�

in which Z=4 is the number of in-plane NN, and

� =
1

Z
�4 cos� kxa

2
�cos� kya

2
�� .

Here, for compactness we have used the following notations:
�i� Jn and In are the in-plane interactions. In the present

model Jn is equal to J=−1. All In are set to be I��0�.
�ii� Jn,n�1 are the interactions between a spin in the nth

layer and its neighbor in the �n�1�th layer. Here, we take
Jn,n�1=−1. Of course, Jn,n−1=0 if n=1, Jn,n+1=0 if n=2Nz.

Now, solving det�M���M�=0, we obtain the spin-wave
spectrum � of the present system. For each kxy there are 4Nz
eigenvalues �, two by two with opposite signs because of the
AF symmetry. The solution for the GF gn,n is given by

gn,n =
�M�n
�M�

, �22�

with �M�n is the determinant made by replacing the nth col-
umn of �M� by u in Eq. �15�. Writing now

�M� = �
i

�� − �i�kxy�� , �23�

one sees that �i�kxy�, i=1, . . . ,4Nz, are poles of the GF gn,n.
Now, we can express gn,n as

gn,n = �
i

fn��i�kxy��
�� − �i�kxy��

, �24�

where fn��i�kxy�� is

fn��i�kxy�� =
�M�n��i�kxy��

�
j�i

�� j�kxy� − �i�kxy��
. �25�

Next, using the spectral theorem which relates the corre-
lation function �Si

−Sj
+� to the GF �44�, one has

�Si
−Sj

+� = lim
�→0

1



� � dkxy�

−�

+� i

2�
�gn,n��� + i��

− gn,n��� − i���
d�

e� − 1
eikxy·�Ri−Rj�, �26�

where � is an infinitesimal positive constant and =1 /kBT,
kB being the Boltzmann constant.

Using the GF presented above, we can calculate self-
consistently various physical quantities as functions of tem-

perature T. Large values of Ising-type interaction I will en-
hance the ordering. On the contrary, for I→0 the transition
temperature will go to zero according to the Mermin-Wagner
theorem �39�. This is seen in the following. For numerical
integration, we will use 802 points in the first Brillouin zone.

Figure 13 shows the sublattice magnetizations of the first
two layers for Nz=2 with I=−0.25 and I=−0.01 �upper and
lower figures, respectively�. As seen, the surface sublattice
magnetization is larger than the sublattice magnetization of
the second layer for Nz=2 in qualitative agreement with the
MC results shown in Fig. 7, in spite of the fact that due to a
finite-size effect, there is a queue of the sublattice magneti-
zation above the transition temperatures for MC results. Note
that the AF coupling gives rise to a zero-point spin contrac-
tion at T=0 which is different for the surface spins and the
second-layer spins. We show in Fig. 14 the phase diagram in
the space �I ,T� where T1 and T3 are transition temperatures
of the surface sublattice 1 and the sublattice 3 of the second
layer.

V. CONCLUDING REMARKS

We have shown in this paper the crossover of the phase
transition from first to second order in the frustrated Ising fcc
AF film. This crossover occurs when the film thickness Nz is
smaller than a value between 2 and 4 fcc lattice cells. These
results are obtained with the highly performing Wang-
Landau flat histogram technique which allows to determine
the first-order transition with efficiency.

For Nz=2, we found that in a range of temperature the
surface spins stay ordered while interior spins are disordered.

M1
M3

M

T
0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

M1
M3

T

M

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8(b)(a)

FIG. 13. Magnetization of sublattices 1 �surface� and 3 �second
layer� versus temperature for Nz=2 and I=−0.25 �upper� and
I=−0.01 �lower�.
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6

−2−1.5−1−0.50

FIG. 14. Phase diagram obtained by the GF method. T1 and T3

are transition temperatures of the sublattice 1 of the surface and of
the sublattice 3 of the second layer. The transition temperatures
should go to zero as I→0 �see text�.
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We interpret this as an effect of the frustration reduction: due
to the lack of neighbors, the surface spins are less frustrated
than the interior spins. As a consequence, interior spins are
disordered at a lower temperature. This has been verified by
the Green’s function calculation.

The second-order transition for Nz=2 is governed by the
surface disordering and is characterized by critical exponents
whose values are deviated from those of the 2D Ising uni-
versality class. We believe that this deviation results from the
effect of the disordered interior spins which act as “corre-
lated” random fields on the surface spins. We do not know if
the critical exponents found here belong to a new universal-

ity class or they are just “effective critical exponents” which
one could scale in some way or another to bring into the 2D
Ising universality class. Anyway, these exponents seem to
obey a weak universality. An answer to this question is de-
sirable.
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